Wet Scavenging and Replenishment of Aerosol in the Warm MBL

Jan Kazil^{1,2} - Graham Feingold² - Hailong Wang³

- 1) University of Colorado, CIRES
- 2) NOAA Earth System Research Laboratory
- 3) Pacific Northwest National Laboratory

Scavenging and replenishment of aerosol

Why?

Removal of aerosol:

- Gives relevance to ...
- In some cases controls ...

Aerosol replenishment processes

Replenished aerosol → cloud properties

Scavenging and replenishment of aerosol need to be well understood and represented in models

Aerosol loss

No replenishment

Wang et al., ACP 2010

No replenishment

- Precipitation depletes aerosol → cloud formation is significantly suppressed within one day
- Aerosol replenishment rate of order 1 mg⁻¹ h⁻¹ is sufficient to maintain clouds
- Local / remote aerosol sources are necessary for open cells to last for days

Wang et al., ACP 2010

MBL aerosol sources

- Sea spray
- Aerosol nucleation
- Entrainment from the FT:
 - "observed FT transport over thousands of kilometers indicates teleconnections between MBL CCN and sources of both natural and/or residual combustion origin" (Clarke et al., ACP 2013)

Sea salt emissions

- Sea spray can likely compensate CCN loss from wet scavenging, and maintain open cells:
 - VOCALS-REx RF06 ~ 2 cm⁻³ h⁻¹ (Kazil et al., ACP. 2011)
 - > 1 µg⁻³ h⁻¹ threshold (Wang et al., ACP 2010)

Aerosol nucleation

South-East Pacific, November 2003 (Tomlinson et al., JGR, 2007)

 $DMS \rightarrow H_2SO_4 \rightarrow nucleation \rightarrow CCN$

Aerosol nucleation (VOCALS, WRF/Chem)

Aerosol nucleation (VOCALS, WRF/Chem)

Nucleation and cloud properties (WRF/Chem)

Entrainment of VOCALS pollution layer (WRF/Chem)

Pollution layer 60 m above inversion (1600 cm⁻³ in acc. mode, Clarke et al.)

Summary

 Significant progress in modeling aerosol wet scavenging and replenishment in the warm MBL

Challenges remain:

- Trade-off between model domain size and resolution
 - **→Over-entrainment**
 - →Cloud response to pollution entrainment likely too strong
- (Over-) simplified aerosol schemes
 - → Very small aerosol particles likely grow too fast
 - → Cloud response to aerosol nucleation likely too strong

2013 AGU Fall Meeting

Wet Scavenging and Deposition:
Quantification, Mechanistic Understanding,
and Impacts

(Session A51G)

Armin Sorooshian – Jan Kazil